

CONTROL MEASURES PROVIDED AT EVERY STAGE STAARTING FROM DEVELOPMENT STAGE TO PRODUCTEND OF LIFE

SYMBIOTEC PHARMALAB (P) LTD

AREA OF CONCERN	CONTROLS AND MITIGATION MECHANISM
Use of dangerous process like	a) Adoption of Enzymic Route
Hydrogenation, run away	During the design stage Symbiotec Pharma Lab is taking utmost care while developing
reactions etc put high process	manufacturing processes. We are continuously working on development of biochemical
hazards.	processes and replacing step wise high hazard chemical synthetic process with that of
In manufacturing plants, any	biochemical process. We have developed biochemical process for our one of the most
accident due to dangerous	hazardous process progesterone where hydrogenation was involved which is one of the most
process will lead to injuries,	hazardous process. In newly developed process the reaction part was replaced by using
threat to life and adverse	enzymes. Thus we replaced the dangerous process.
environmental impacts	
	b) Adoption of Continuous Flow Chemistry
	We have hired external resources and started trials on continuous flow chemistry which is an
	environmental friendly technology and involves a series of continuous specialized equipment
	like plug flow reactors, annular centrifugal extractor, thin film reactors etc. This is an end to
	end process meaning addition of input at one end and collection of output from other end.
	There shall be fully automated operations with DCS
	BENIFITES
	• Very first benefits of continuous flow chemistry includes, elimination of possibilities of
	major fire due to high inventory of flammable chemicals , in new process less inventory of
	chemicals in plant is required say use of 16 KL conventional reactor shall be replaced with
	that of mere 100 lts plug flow reactors.
	This process will lead to considerable reduction in waste generation.
	Use of very less energy as compared to conventional process where equipment consume
	lot of electrical and thermal energy.
	Because of closed systems there shall be reduction in VOC emissions and less exposure
	to workmen.
	Use of dangerous process like Hydrogenation, run away reactions etc put high process hazards. In manufacturing plants, any accident due to dangerous process will lead to injuries, threat to life and adverse

During design stage if the substitution of poisonous and dangerous chemicals is not considered definitely it will create adverse environmental impacts, health issues and workplace related injuries during different activities in manufacturing plants.

From the designing stage we shall work on hierarchy of controls like elimination, substitution, engineering controls, administrative controls and personnel protective equipment.

Consideration for replacing poisonous and hazardous chemicals shall be the part of our research and development process.

	AREA OF CONCERN	CONTROLS AND MITIGATION MECHANISM
		To ensure sustainable procurement we have following mechanism in place :
	In line with PSCI Guidelines	Sustainable Procurement Policy.
	and United Nation's Global	SOP on Sustainable Procurement.
	Compact Principles too,	Sharing of "Supplier's code of conduct" with suppliers.
	sustainable procurement plays	Supplier's Audit in order to check compliance.
	a crucial role. The areas of	SOP on Contractor's safety Management.
	concern at the end of supplier	Declaration on the part of contractors.
PROCUREMENT	area:	
STAGE		Reference SOP- SYM/EHSOP/EHS/010, SYM/CEHSP/PRO/006
	a) Compliance of EHS and	
	Labour & Ethics norms	
	along with requirement of	
	management systems is	
	the area of concern.	
	b) Compliance of legal	
	requirements	

c) Any major incident,	
accident, environmenta	
accident at supplier's si	e.
d) Accidents during	
transportation.	
e) Compliance at the end of	of
transporter	

		AREA OF CONCERN	CONTROLS AND MITIGATION MECHANISM
	1)	Emissions and exposure	1) Breather valves and insulation on tanks.
		of solid and liquid	2) Fume hoods attached with scrubbers are in place. The scrubbing media is aqueous and
		chemicals during storage	drained directly to effluent treatment plant. In ETP, water is treated and recycled and re
WAREHOUSING		and dispensing activities.	used.
STAGE			3) For solid material dust collectors are in place, whatever dust is collected from dust
			collectors is sent to cement industry as an alternative fuel.
			(Reference SOP- SYM/EHSOP/ENV/008)
	_		
	2)		1) Procedure on Handling of Chemical Spillage-SYM/EHSOP/SAF/016.
		the result of over flow of	2) Overflow protection like sensors and interlocking.
		tanks and leakage of	
		chemical drums and	

falling of containers	Spilled material during overflow is collected in drums/ container or soaked in absorbent
during transferring	(based on the quantity) which is Hazardous waste. All the hazardous waste is sent to cement
activities.	industries as alternative fuel (Coprocessing).
	Alternatively, if cement industries do not accept the waste, the same is sent to government
	authorized TSDF (Treatment, storage and disposal facility) where this material is incinerated
	in a controlled and planned way.
3) Generation of hazardous	All this waste is called as hazardous waste which is stored at a dedicated place called as
waste during dispensing	'Hazardous Waste Storage Area'. This area remains under lock and key and only authorized
of RMs , transferring to	persons are allowed to enter in this area. This area is maintained in line with the requirement
production & Expired raw	of pollution control board.
materials	All the hazardous waste is sent to cement industries as alternative fuel (Coprocessing).
	Alternatively if due to any reason, cement industries do not accept the waste, the same is sent
	to government authorized TSDF (Treatment, storage and disposal facility) where this material
	is incinerated in a controlled and planned way.
	(Reference
	SOP- SYM/EHSOP/ENV/008)

	AREA OF CONCERN	CONTROLS AND MITIGATION MECHANISM
	In production area, starting	Our plant are well equipped and have sufficient controls to reduce significance of the
	from batch charging to final	environmental aspects and their impacts.
PRODUCTION	stage i.e. transferring of	a. All the spillage is collected and absorbed using absorbent, tied and sent to Hazardous
STAGE	finished goods to warehouse	waste storage area. Finally this waste is sent to cement industries as alternative fuel
	there are many significant	(Coprocessing). Alternatively if due to any reason, cement industries do not accept the
	environmental aspects for	waste, the same is sent to government authorized TSDF (Treatment, storage and disposal
	that environmental aspect-	facility).
	Impact study has been	All the solid spillage is collected in poly bags, labelled &tied and sent to Hazardous waste
	carried out. However to	storage area. Finally this waste is sent to cement industries as alternative fuel

summarize it following are the significant environmental concerns:

- a. Spillage /Leakage/Overflow of liquid raw materials and solvent
- Materials
- c. VOC generation
- d. Fumes generation
- e. Hazardous waste generation like used centrifuge bags, polybags, containers.
- f. Energy consumption.
- g. Generation of electronic waste
- h. Spent Solvent | f. generation
- i. Distillation residues generation
- Dissolved solid chemicals in effluent.

(Coprocessing). Alternatively if due to any reason, cement industries do not accept the waste, the same is sent to government authorized TSDF (Treatment, storage and disposal facility).

(Reference SOP-SYM/EHSOP/ENV/008)

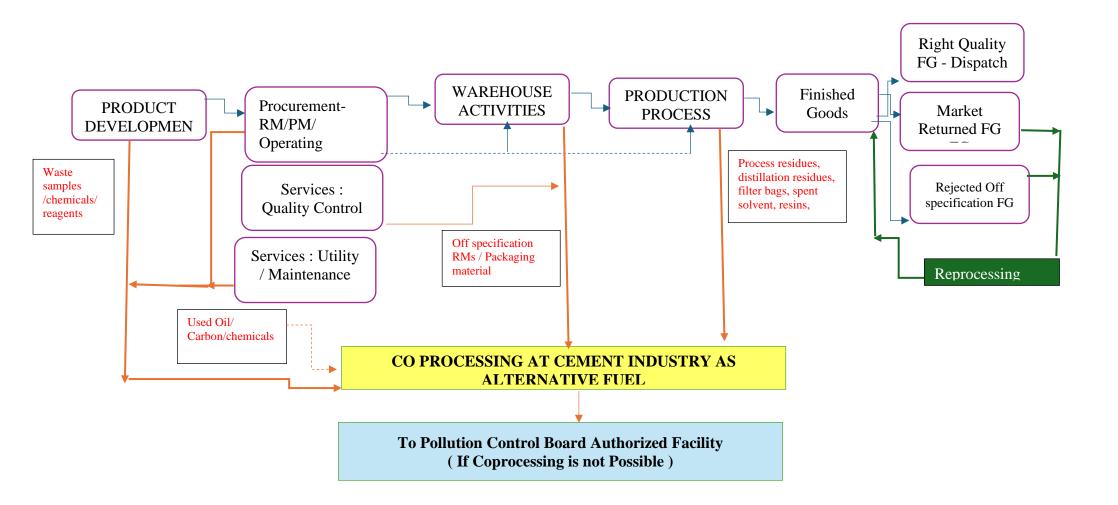
- b. To control the VOC generation, reactors are provided with double stage condensers. Tanks are provided with insulation for volatile materials whereas breather valves. Containers of volatile chemicals are stored in a cooled dedicated places.
- b. Spillage of solid Raw c. To prevent escape of chemical fumes in atmosphere, reactors are attached with different scrubbers. The scrubbing media is aqueous and drained directly to effluent treatment plant. In ETP, water is treated and recycled and re used.
 - d. Hazardous waste generated during various activities is handled in environment friendly manner. All the combustible material like filter bags, is sent to cement industries as alternative fuel where as containers and poly bags are disposed to government approved authorized recyclers. (Reference SOP-SYM/EHSOP/ENV/008)
 - e. Company has taken various measures for energy savings like installation of VFDs (variable frequency drives), Auto cut at set temperature in cold rooms and controlled temp rooms, Batch production records clearly indicate the time of each operation which is monitored and ensured by effective supervision.
 - All the electronic waste is collected, segregated and stored at a dedicated place which is under lock and key and controlled by Environment Department. This Electronic waste is sent to government authorized recyclers and the annual report is submitted to Pollution control board. We have an SOP - SYM/EHSOP/ENV/013 on handling of electrical and electronic waste.
 - During production activities some mother liquors are generated which contain large amount of solvents. These mother liquors are distilled in distillation kettles to get pure solvents which might have some impurities. Because we are manufacturing life saving drugs we do not re use this recovered solvent, we use only fresh solvent. We sell this spent solvent to various recyclers to use in various processes like in paints.

	 h. After distillation process of mother liquor, the left over waste is called distillation residue which is hazardous in nature having high calorific values. This distillation residue is collected in drums and sent to cement industry for alternative fuel. If for any reason like shut down or maintenance of cement plant, this material can be sent to government approved facility (RAMKY) as an alternative fuel. i. Effluent generated from various processes contains high amount of dissolved solids which do not get isolated in ETP. The effluent after ETP treatment is subjected to Reverse Osmosis System (RO) to get pure recyclable water. The reject of RO is subjected to MEME system and dryer to get solid salts which is hazardous waste having high calorific value and sent to cement industry as alternative fuel. If for any reason like shut down or maintenance of cement plant, this material can be sent to government approved facility (RAMKY) as an alternative fuel.
--	---

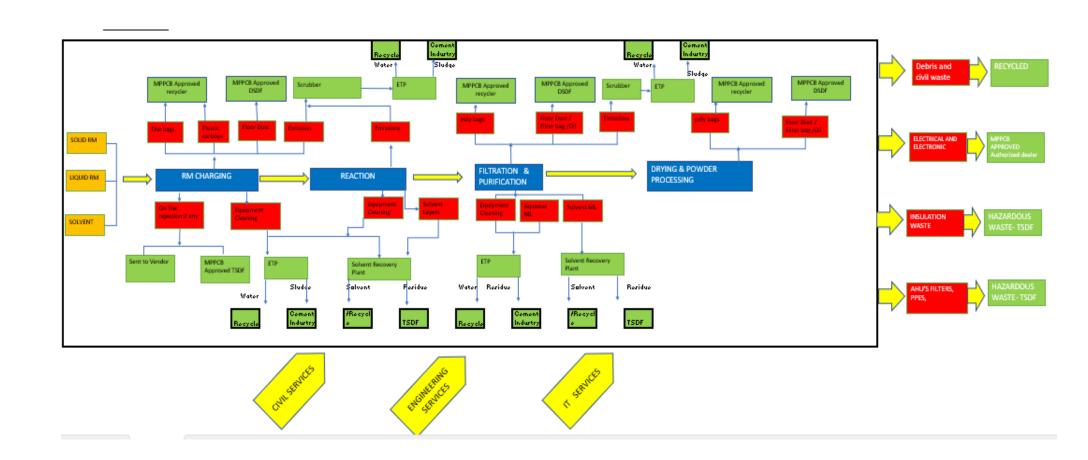
SERVICING BY	AREA OF CONCERN	CONTROLS AND MITIGATION MECHANISM
MAINTENANCE/	Engineering department is a	Symbiotec being a responsible corporate citizen considers protection of environment at it's
UTILITY	service department and helps	prime responsibility. We have taken following steps to address environmental issues arose
DEPARTMENTS	in smooth running of	from activities of engineering department:
	production plants. It consists	a) & b) To address emission issues we have installed bio fuel boilers (briquettes) at our
(ENGINEERING	of different subfunctions like	both the sites. At SEZ site we have also installed a boiler of PNG. Bag filters are provided
OPERATIONS)	utility, electrical, maintenance	to boilers prevent SPM generation. The ash is sent to the manufacturer of bricks.
	& civil departments. There are	c) We understand that water is precious, we are doing steam recovery, we are using ETP
	certain areas of environmental	treated water in to our cooling towers.
	concerns:	d) Waste oil collected from different stages is stored at a dedicated place under lock and
		key. The same is sold to government authorized recycler, as per the direction of pollution
	a) Emissions from stakes	control board.
	b) Use of natural resource	e) We have installed VFDs wherever required, sensors in cold rooms and controlled
	(Furnace oil) in boilers.	temperature rooms. Replaced conventional lights with automatic LED lights which are

c) Water consumption in boilers d) Waste oil generations e) High Electrical Consumption f) Noise generation in utility areas. g) Electrical and electronic waste generation	campaigns to avoid misuse of electricity. f) High Noise areas are restricted and acoustic enclosures are provided where operators work. Further use of ear muffs is made compulsory in these areas. g) All the electronic waste is collected, segregated and stored at a dedicated place which
---	--

	AREA OF CONCERN	CONTROLS AND MITIGATION MECHANISM
	Quality units also contributes	Following are the controls provided in QCL to address the environmental issues:
QUALITY	in some significant	a) & b) All the waste samples are hazardous in nature, these are collected & sent to
CONTROL	environmental concerns like:	Hazardous waste storage area. Finally these waste samples along with other hazardous
		waste are sent to cement industries as alternative fuel (Coprocessing). Alternatively if
	a) Waste FG and RM samples	due to any reason, cement industries do not accept the waste, the same is sent to
	generation	government authorized TSDF (Treatment, storage and disposal facility).
	b) Waste chemical	c) In microbiology lab culture and media is used which is autoclaved and sent for disposal
	generation e.g. after expiry	at government approved Biomedical Waste treatment facility. We have authorization from
	of the chemical, left over	Pollution control board.
	after analysis	d) Electronic waste collected from maintenance of equipment and discarded equipment
		collected, segregated and stored at a dedicated place which is under lock and key and


Bio medical waste
generation from
microbiology laboratory

 d) Electronic and electrical waste generation e.g.
 During maintenance and discarded
 GC/HPLC/Equipment controlled by Environment Department. This Electronic waste is sent to government authorized recyclers and the annual report is submitted to Pollution control board. We have an SOP - SYM/EHSOP/ENV/013 on handling of electrical and electronic waste.


	AREA OF CONCERN	CONTROLS AND MITIGATION MECHANISM
	Here two critical aspects	If any batch of finished goods is not meeting the specification or is market returned material
DISPATCH	are identified which need	it is finally reprocessed to make it reusable
	due attention for disposal in	If for any reason it can not be reprocessed, it shall be disposed in an environmentally friendly
	an environment friendly	manner by sending it to cement industry where it is co processed with other waste and used
	manner:	as alternative fuel for cement kilnsAll this waste is called as hazardous waste which is stored
		at a dedicated place called as 'Hazardous Waste Storage Area'. This area remains under
	1) Market returns Product.	lock and key and only authorized persons are allowed to enter in this area. This area is
	2) Date Expired Product	maintained in line with the requirement of pollution control board.
		All the hazardous waste is sent to cement industries as alternative fuel (Co processing).
		Alternatively if due to any reason, cement industries do not accept the waste, the same is
		sent to government authorized TSDF (Treatment, storage and disposal facility) where this
		material is incinerated in a controlled and planned way.
		(Reference SOP- SYM/EHSOP/ENV/008)

PROCESS FLOW DIAGRAM -1

